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1 Mirror Descent

1.1 Projected Gradient Descent

Let us consider a general optimization problem
min f(x),
x

s.t. x € Q.

Definition 1 Suppose that Q@ C R"™, the indicator function of Q is

400, x &0
da(x) = {0 XiQ

Definition 2 The projection of a point z onto a set Q is defined as

mo(2) = arg min [x — 7],

Example 1 Projection examples:

Q= {x|x = 0}, then mq(z) = max{z,0}.

o O ={x|l X x <X u}, then mo(z) = max(min{z, u},1).

Q= By = {x]| ||x||2 < 1}, then
< ]_
o(2) {z,z lz][2 <1,

lz||l2 > 1.

e Q= {x|a’x =0b}. Q: What is the mq(z)??

This is equivalent to
min{f (x) + do(x)}.

Obviously, dq is convex and non-smooth. Let us compute the proximal operator of dg as follows.

¢ . B )2 . )2 t
= 00 + —|x — = — =T .
p’r‘oxl/ﬁtgn (Z ) al‘gxlgl(tsl;ll){ (X) 9 HX VA || } aI‘gI);HGII’l ||X VA || Q(Z )

Obviously, mq(z!) is the projection of z; onto €.

o Q= {x[x >0}, then x'*' = prox; zs, (2') = mq(2z") = max{x"’ — %Vf(xt),()}.
o Q= {x|l <x <u}, then x'" = prow g5, (2") = ma(z") = max(min{x’ — FV f(x"),u},1).

e The same with By or hyperplane.

These algorithms are called projected gradient descent.



1.1.1 Bregman Divergence

Another view point of projected gradient descent. Let us consider

1
X = argmin { f(x) + (VF(x'),x —x) + o—||x - x|
x€Q 25

distance term

If O = R", then x!T! = x! — 5, Vf(x!).
If O C R", then x!™ = 7o (x! — 5,V f(x?)).

The basic idea of mirror descent is to choose the distance term to fit the problem geometry. So, the mirror
descent is

X+ arggleig{f(xt) + (VF(x'),x - x) + siths(x, xt>}7

where Dy (x,x") is a generalized distance function with respect to ¢.

Definition 3 The Bregman divergence with respect to a conver function ¢ is denoted to be
D¢(Xa Y) = ¢(X) - ¢(y) - <V¢(y)a X = y> (5)

Example 2« Let ¢(x) = 1||x|?, then Dy(x,y) = [|x — y]|.

o Let ¢p(x) =3, wilogz;, x € R, then Dy(x,y) = >, (z;logx; /yi + yi — xi).

o If we further assume that x,y € A = {x|>, z; = 1,x € R} }, that is A is a unit simplex. Then,
Dy(x,y) = > _wilogx;/y; = KL(x|ly), (6)
i
where KL is the KL-divergence or relative entropy.

Properties of Bregman divergence:

e Dy(x,y) > 0. Dy(x,y) =0if x=1y.
o If ¢ is a a-strongly convex function, then Dy(x,y) > |lx — y|°.
o Dy(x,y) is convex in x, in general not convex in y.

o In general, Dy(x,y) # Dy(y,x).

VxDy(x,y) = Vo(x) — Vo(y). (7)
Theorem 1 (Generalized Pythagores Identity)
Dy(x,y) + Dy(2,%) — Dy(z,y) = (Vo(x) = Vo(y)) (x — 2). (8)

You can compare this with the result:

I =yl + |z — 2 — |z - y|* = 2(x — ) " (x — 2).



Theorem 2 Let ¢ be closed, convex and differentiable. Fix anyx,y € (¢), definex = Vo (x) andy = Vo(y),
then

Vo' (x) = Vo' (Vo(x)) = x, (9)
Dy(x,y) = Dg-(,%). (10)

Before prove the theorem, let us recall the following lemma:

Lemma 1 Suppose that ¢ is closed and convex. Then the following are equivalent.

o y € 09(x),
o x € 09*(y),
o 9(x)+9"(y) = (x,y)-

Proof 1 Proof of the above theorem. By Lemma 1, we have that

9" (%) = (X,%x) — ¢(x), (11)
" (¥) = (¥.y) — o(y) (12)
Therefore, V¢*(x) = x and V¢*(y) =y. Compute that
Dy (3,%) = ¢"(y) — ¢" (%) — (Vo™ (%), ¥ — %) (13)
= (y,y) —o(y) = (%,%x) +o(x) — (x,¥ = %) (14)
= Dy(x,y). (15)

1.2 Bregman Projection

Definition 4 The projection of y on to Q) under the Bregman divergence is denoted as

mo(y) = argmin Dy (x, y). (16)

Obuiously, the minimizer exists due to the convexity of Dy(x,y) in X.

Theorem 3 (Optimality Condition) Suppose that ¢ is differentiable, then for any y € R", let wg(y) =
arg minkeq Dg(X,y), then

(Vo(mh(y) = Vo) (rh(y) —2) <0, (17)
where for any z € €.
Theorem 4
Dy(2,y) = Dy (2. 75(y)) + Do (i (y).¥)- (18)
It can be proved by Theorem 1.
1.3 Bregman Projected Gradient Descent == Mirror Descent
Recall that PGD
11 = i (ang i { £+ (V)= )+ 5 e x1P ) (19)
= mo(x' — 5, Vf(x")). (20)



It comes from PGD'’s inspiration, the Bregman Projected Gradient Descent is

(Vo) (Vo(x') — s:Vf(x"))). (22)

x4 = iy (g i {70+ (970).x = %) + Do)} ) 2!
xcR"™ t
¢
TQ

The reason is that we first to solve the unconstrained optimization

min § F(x') + (VF(xt), x — x') + ~ Dy (x, x)
\ S

x€ER™
to obtain the optimal value y**! satisfies
Vo(y'™!) = Vo(x') — s, Vf(x").

Therefore,

X = mh(y ) = (V) (Vo) - s,V ()

where (V¢)~! is the inverse function of V¢. Moreover, if we suppose that ¢ is strongly convex, then by

Theorem 2, we have
X1 = 7 (y' 1) = (Vo (Vo(x') — VS (x))),

due to (V¢)~! = Vo*.

Figure 1: Primal space and Mirror space

Example 3« Let ¢(x) = £[|x||?, then Dy(x,y) = ||x — y||. We have the Projected gradient descent
algorithm.

o Let 9(x) =D, wilogw;, and x,y € Q= {x|> ,x; = 1,x € R}, that is Q is a unit simplex. Then, let
us consider

mo(y) = argmin Dy(x, y) (23)
= arg glelg{; z;logxi/y;}- (24)

Write down the Largrange function as L(x,\) = >, x;logx;/y; + A(>_,x; — 1). Take g—zLi =0, then

get x; = yyexp(—A — 1). According to ), x; = 1, then exp(—A — 1) = Elyv . So, x; = Zyiy, , that is
i Yi i Yi

) * Yy
iy =X = —
a(y) v

Let us compute y'™1 according to the unconstrained optimization, then

Vo(y™) = Vo(x') — s:Vf(x"),



implies
1+logy; = 1+logxz; — s [V f(x")];.

So,
i1 =t exp(-VSGL),

then
Y xf eXp{ st [VF(x)i}

TS T T Y exp (s VG

1.3.1 Convergence Analysis of Mirror Descent

Theorem 5 Assume that f is convex and L-Lipschz, ¢ is a-strongly convex, and {x'}2, is from the Mirror
descent algorithm, then

fbest o f* < + 2a Et 0 St’ (25)
Zt =0 St
where R = su D 0 best — pj t — V2aR
Pxeq Dy (x,%x") and f ming<i<7 f(x*). Moreover, take s; i then
es * 2R
freot - < Ly (26)
Proof 2 By the convexity of f, fort > 0 and any x € , we have
fx') = fx) <(VFE),x" —x) (27)
1
= —(Vo(x') = Vo(y"™), x" —x) (28)
t
1
= S [Dyay" ) + Dyl x) — Dyl y' )] (29)
1
< — 5 [D¢( yh + Dy(x, x") — D¢(x,xt+1) - D¢(Xt+1, yt+1)] (30)

where the first equation comes from the optimal condition, i.e., Vo(y'tl) — Vo(x!) + in(xt):O, the and
the second inequality is induced by the general Pythagores identity 1, and the last inequality uses Theorem 4.

Applying the telescopic sum technique in the term Dg(x,x") — Dy(x,x' 1) fromt =0 tot =T — 1, we can
bound it with Dy(x,x°). For the remaining,

Dy (s, y"71) = Dy(xHy ) = (') = 6(x 1) — (Voly'™),x! —x"7) (31)
< (Vo(x) = Voly'™),x —x 1) = 2t — x| (2)
= s, (VF () x! =) = Zx! = x| (33)
< seLfxt = x| = Sl — x| (34)
(s:L)*
<
< (35)

where the first inequality uses the a-strongly convex property and the last inequality uses az — bz? <% for
Vz € R.

Hence, one has

(36)



Summing it over fromt =0 tot =T — 1 and letting x := x*, we proved,

T—1 72Tl
se () = f()) SR+ 5= si. (37)
t=0 * =0
Plugging in fb*** < f(x;) for0 <t <T,
es * R+ sz Tf_l 52
fb t f S 2aT_1t—0 t’ (38)
t=0 St
which complete the proof. If sy = VL%;’%% is a constant, it’s trivial to prove that f*s* — f* has a sub-liner

convergence rate.
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