Optimization Theory and Algorithm II

September 29, 2022

Lecture 7

Lecturer:Xiangyu Chang

Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Mirror Descent

1.1 Projected Gradient Descent

Let us consider a general optimization problem

 $\min_{x} f(\mathbf{x}),$
s.t. $\mathbf{x} \in \Omega$.

Definition 1 Suppose that $\Omega \subseteq \mathbb{R}^n$, the indicator function of Ω is

$$\delta_{\Omega}(\mathbf{x}) = \begin{cases} +\infty, & \mathbf{x} \notin \Omega\\ 0, & \mathbf{x} \in \Omega. \end{cases}$$
(1)

Definition 2 The projection of a point \mathbf{z} onto a set Ω is defined as

$$\pi_{\Omega}(\mathbf{z}) = \arg\min_{\mathbf{x}\in\Omega} \|\mathbf{x} - \mathbf{z}\|_2.$$
⁽²⁾

Example 1 Projection examples:

- $\Omega = {\mathbf{x} | \mathbf{x} \succeq 0}, \text{ then } \pi_{\Omega}(\mathbf{z}) = \max{\mathbf{z}, 0}.$
- $\Omega = {\mathbf{x} | l \leq \mathbf{x} \leq u}, \text{ then } \pi_{\Omega}(\mathbf{z}) = \max(\min{\{\mathbf{z}, u\}}, l).$
- $\Omega = B_2 = \{\mathbf{x} | \|\mathbf{x}\|_2 \le 1\}, then$

$$\pi_{\Omega}(\mathbf{z}) = \begin{cases} \mathbf{z}, & \|\mathbf{z}\|_2 \leq 1, \\ \frac{\mathbf{z}}{\|\mathbf{z}\|_2} & \|\mathbf{z}\|_2 > 1. \end{cases}$$

• $\Omega = {\mathbf{x} | \mathbf{a}^\top \mathbf{x} = b}$. Q: What is the $\pi_{\Omega}(\mathbf{z})$??

This is equivalent to

$$\min_{\mathbf{x}} \{ f(\mathbf{x}) + \delta_{\Omega}(\mathbf{x}) \}.$$
(3)

Obviously, δ_{Ω} is convex and non-smooth. Let us compute the proximal operator of δ_{Ω} as follows.

$$prox_{1/\beta\delta_{\Omega}}(\mathbf{z}^{t}) = \arg\min_{\mathbf{x}\in(\delta_{\Omega})} \left\{ \delta_{\Omega}(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{x} - \mathbf{z}^{t}\|^{2} \right\} = \arg\min_{\mathbf{x}\in\Omega} \|\mathbf{x} - \mathbf{z}^{t}\|^{2} := \pi_{\Omega}(\mathbf{z}^{t}).$$
(4)

Obviously, $\pi_{\Omega}(\mathbf{z}^t)$ is the projection of \mathbf{z}_t onto Ω .

- $\Omega = \{\mathbf{x} | \mathbf{x} \ge 0\}$, then $\mathbf{x}^{t+1} = prox_{1/\beta\delta_{\Omega}}(\mathbf{z}^t) = \pi_{\Omega}(\mathbf{z}^t) = \max\{\mathbf{x}^t \frac{1}{\beta}\nabla f(\mathbf{x}^t), 0\}.$
- $\Omega = \{\mathbf{x} | l \leq \mathbf{x} \leq u\}$, then $\mathbf{x}^{t+1} = prox_{1/\beta\delta_{\Omega}}(\mathbf{z}^t) = \pi_{\Omega}(\mathbf{z}^t) = \max(\min\{\mathbf{x}^t \frac{1}{\beta}\nabla f(\mathbf{x}^t), u\}, l)$.
- The same with B_2 or hyperplane.

These algorithms are called *projected gradient descent*.

1.1.1 Bregman Divergence

Another view point of projected gradient descent. Let us consider

$$\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}\in\Omega} \left\{ f(\mathbf{x}^t) + \langle \nabla f(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \underbrace{\frac{1}{2s_t} \|\mathbf{x} - \mathbf{x}^t\|^2}_{\text{distance term}} \right\}$$

If $\Omega = \mathbb{R}^n$, then $\mathbf{x}^{t+1} = \mathbf{x}^t - s_t \nabla f(\mathbf{x}^t)$. If $\Omega \subset \mathbb{R}^n$, then $\mathbf{x}^{t+1} = \pi_{\Omega}(\mathbf{x}^t - s_t \nabla f(\mathbf{x}^t))$.

The basic idea of mirror descent is to choose the distance term to fit the problem geometry. So, the mirror descent is

$$\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}\in\Omega} \left\{ f(\mathbf{x}^t) + \langle \nabla f(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \frac{1}{s_t} D_{\phi}(\mathbf{x}, \mathbf{x}^t) \right\}$$

where $D_{\phi}(\mathbf{x}, \mathbf{x}^t)$ is a generalized distance function with respect to ϕ .

Definition 3 The Bregman divergence with respect to a convex function ϕ is denoted to be

$$D_{\phi}(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) - \phi(\mathbf{y}) - \langle \nabla \phi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$
(5)

Example 2 • Let $\phi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$, then $D_{\phi}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

- Let $\phi(\mathbf{x}) = \sum_i x_i \log x_i, \mathbf{x} \in \mathbb{R}^n_+$, then $D_{\phi}(\mathbf{x}, \mathbf{y}) = \sum_i (x_i \log x_i / y_i + y_i x_i)$.
- If we further assume that $\mathbf{x}, \mathbf{y} \in \Delta = \{\mathbf{x} | \sum_{i} x_{i} = 1, \mathbf{x} \in \mathbb{R}^{n}_{+}\}$, that is Δ is a unit simplex. Then,

$$D_{\phi}(\mathbf{x}, \mathbf{y}) = \sum_{i} x_{i} \log x_{i} / y_{i} = KL(\mathbf{x} || \mathbf{y}), \tag{6}$$

where KL is the KL-divergence or relative entropy.

Properties of Bregman divergence:

- $D_{\phi}(\mathbf{x}, \mathbf{y}) \ge 0$. $D_{\phi}(\mathbf{x}, \mathbf{y}) = 0$ if $\mathbf{x} = \mathbf{y}$.
- If ϕ is a α -strongly convex function, then $D_{\phi}(\mathbf{x}, \mathbf{y}) \geq \frac{\alpha}{2} \|\mathbf{x} \mathbf{y}\|^2$.
- $D_{\phi}(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} , in general not convex in \mathbf{y} .
- In general, $D_{\phi}(\mathbf{x}, \mathbf{y}) \neq D_{\phi}(\mathbf{y}, \mathbf{x})$.

•

$$\nabla_{\mathbf{x}} D_{\phi}(\mathbf{x}, \mathbf{y}) = \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{y}).$$
(7)

Theorem 1 (Generalized Pythagores Identity)

$$D_{\phi}(\mathbf{x}, \mathbf{y}) + D_{\phi}(\mathbf{z}, \mathbf{x}) - D_{\phi}(\mathbf{z}, \mathbf{y}) = (\nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{y}))^{\top} (\mathbf{x} - \mathbf{z}).$$
(8)

You can compare this with the result:

$$\|\mathbf{x} - \mathbf{y}\|^2 + \|\mathbf{z} - \mathbf{z}\|^2 - \|\mathbf{z} - \mathbf{y}\|^2 = 2(\mathbf{x} - \mathbf{y})^\top (\mathbf{x} - \mathbf{z}).$$

Theorem 2 Let ϕ be closed, convex and differentiable. Fix any $\mathbf{x}, \mathbf{y} \in (\phi)$, define $\hat{\mathbf{x}} = \nabla \phi(\mathbf{x})$ and $\hat{\mathbf{y}} = \nabla \phi(\mathbf{y})$, then

$$\nabla \phi^*(\hat{\mathbf{x}}) = \nabla \phi^*(\nabla \phi(\mathbf{x})) = \mathbf{x},\tag{9}$$

$$D_{\phi}(\mathbf{x}, \mathbf{y}) = D_{\phi^*}(\hat{\mathbf{y}}, \hat{\mathbf{x}}). \tag{10}$$

Before prove the theorem, let us recall the following lemma:

Lemma 1 Suppose that ϕ is closed and convex. Then the following are equivalent.

- $\mathbf{y} \in \partial \phi(\mathbf{x}),$
- $\mathbf{x} \in \partial \phi^*(\mathbf{y}),$
- $\phi(\mathbf{x}) + \phi^*(\mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle.$

Proof 1 Proof of the above theorem. By Lemma 1, we have that

$$\phi^*(\hat{\mathbf{x}}) = \langle \hat{\mathbf{x}}, \mathbf{x} \rangle - \phi(\mathbf{x}), \tag{11}$$

$$\phi^*(\hat{\mathbf{y}}) = \langle \hat{\mathbf{y}}, \mathbf{y} \rangle - \phi(\mathbf{y}). \tag{12}$$

Therefore, $\nabla \phi^*(\hat{\mathbf{x}}) = \mathbf{x}$ and $\nabla \phi^*(\hat{\mathbf{y}}) = \mathbf{y}$. Compute that

$$D_{\phi^*}(\hat{\mathbf{y}}, \hat{\mathbf{x}}) = \phi^*(\hat{\mathbf{y}}) - \phi^*(\hat{\mathbf{x}}) - \langle \nabla \phi^*(\hat{\mathbf{x}}), \hat{\mathbf{y}} - \hat{\mathbf{x}} \rangle$$
(13)

$$= \langle \hat{\mathbf{y}}, \mathbf{y} \rangle - \phi(\mathbf{y}) - \langle \hat{\mathbf{x}}, \mathbf{x} \rangle + \phi(\mathbf{x}) - \langle \mathbf{x}, \hat{\mathbf{y}} - \hat{\mathbf{x}} \rangle$$
(14)

$$= D_{\phi}(\mathbf{x}, \mathbf{y}). \tag{15}$$

1.2 Bregman Projection

Definition 4 The projection of \mathbf{y} on to Ω under the Bregman divergence is denoted as

$$\pi^{\phi}_{\Omega}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\Omega} D_{\phi}(\mathbf{x}, \mathbf{y}).$$
(16)

Obviously, the minimizer exists due to the convexity of $D_{\phi}(\mathbf{x}, \mathbf{y})$ in \mathbf{x} .

Theorem 3 (Optimality Condition) Suppose that ϕ is differentiable, then for any $\mathbf{y} \in \mathbb{R}^n$, let $\pi^{\phi}_{\Omega}(\mathbf{y}) = \arg \min_{\mathbf{x} \in \Omega} D_{\phi}(\mathbf{x}, \mathbf{y})$, then

$$(\nabla \phi(\pi_{\Omega}^{\phi}(\mathbf{y})) - \nabla \phi(\mathbf{y}))^{\top} (\pi_{\Omega}^{\phi}(\mathbf{y}) - \mathbf{z}) \le 0,$$
(17)

where for any $\mathbf{z} \in \Omega$.

Theorem 4

$$D_{\phi}(\mathbf{z}, \mathbf{y}) \ge D_{\phi}(\mathbf{z}, \pi_{\Omega}^{\phi}(\mathbf{y})) + D_{\phi}(\pi_{\Omega}^{\phi}(\mathbf{y}), \mathbf{y}).$$
(18)

It can be proved by Theorem 1.

1.3 Bregman Projected Gradient Descent == Mirror Descent

Recall that PGD

$$\mathbf{x}^{t+1} = \pi_{\Omega} \Big(\arg\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ f(\mathbf{x}^t) + \langle \nabla f(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \frac{1}{2s_t} \|\mathbf{x} - \mathbf{x}^t\|^2 \right\} \Big)$$
(19)

$$=\pi_{\Omega}(\mathbf{x}^t - s_t \nabla f(\mathbf{x}^t)). \tag{20}$$

It comes from PGD's inspiration, the Bregman Projected Gradient Descent is

$$\mathbf{x}^{t+1} = \pi_{\Omega}^{\phi} \Big(\arg\min_{\mathbf{x} \in \mathbb{R}^n} \left\{ f(\mathbf{x}^t) + \langle \nabla f(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \frac{1}{s_t} D_{\phi}(\mathbf{x}, \mathbf{x}^t) \right\} \Big)$$
(21)

$$=\pi_{\Omega}^{\phi}((\nabla\phi)^{-1}(\nabla\phi(\mathbf{x}^{t})-s_{t}\nabla f(\mathbf{x}^{t}))).$$
(22)

The reason is that we first to solve the unconstrained optimization

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{f(\mathbf{x}^t) + \langle \nabla f(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \frac{1}{s_t} D_{\phi}(\mathbf{x}, \mathbf{x}^t)\right\}$$

to obtain the optimal value \mathbf{y}^{t+1} satisfies

$$\nabla \phi(\mathbf{y}^{t+1}) = \nabla \phi(\mathbf{x}^t) - s_t \nabla f(\mathbf{x}^t).$$

Therefore,

$$\mathbf{x}^{t+1} = \pi_{\Omega}^{\phi}(\mathbf{y}^{t+1}) = \pi_{\Omega}^{\phi}((\nabla\phi)^{-1}(\nabla\phi(\mathbf{x}^{t}) - s_t\nabla f(\mathbf{x}^{t}))),$$

where $(\nabla \phi)^{-1}$ is the inverse function of $\nabla \phi$. Moreover, if we suppose that ϕ is strongly convex, then by Theorem 2, we have

$$\mathbf{x}^{t+1} = \pi_{\Omega}^{\phi}(\mathbf{y}^{t+1}) = \pi_{\Omega}^{\phi}(\nabla\phi^*(\nabla\phi(\mathbf{x}^t) - s_t\nabla f(\mathbf{x}^t))),$$

due to $(\nabla \phi)^{-1} = \nabla \phi^*$.

Figure 1: Primal space and Mirror space

- **Example 3** Let $\phi(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$, then $D_{\phi}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$. We have the Projected gradient descent algorithm.
 - Let $\phi(\mathbf{x}) = \sum_{i} x_i \log x_i$, and $\mathbf{x}, \mathbf{y} \in \Omega = \{\mathbf{x} | \sum_{i} x_i = 1, \mathbf{x} \in \mathbb{R}^n_+\}$, that is Ω is a unit simplex. Then, let us consider

$$\pi^{\phi}_{\Omega}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\Omega} D_{\phi}(\mathbf{x}, \mathbf{y}) \tag{23}$$

$$= \arg\min_{\mathbf{x}\in\Omega} \{\sum_{i} x_i \log x_i / y_i\}.$$
(24)

Write down the Largrange function as $L(\mathbf{x}, \lambda) = \sum_{i} x_i \log x_i / y_i + \lambda(\sum_i \mathbf{x}_i - 1)$. Take $\frac{\partial L}{\partial x_i} = 0$, then get $x_i = y_i \exp(-\lambda - 1)$. According to $\sum_i x_i = 1$, then $\exp(-\lambda - 1) = \frac{1}{\sum_i y_i}$. So, $x_i = \frac{y_i}{\sum_j y_j}$, that is

$$\pi^{\phi}_{\Omega}(\mathbf{y}) = \mathbf{x}^* = \frac{\mathbf{y}}{\|\mathbf{y}\|_1}$$

Let us compute \mathbf{y}^{t+1} according to the unconstrained optimization, then

$$\nabla \phi(\mathbf{y}^{t+1}) = \nabla \phi(\mathbf{x}^t) - s_t \nabla f(\mathbf{x}^t),$$

implies

$$1 + \log y_i = 1 + \log x_i - s_t [\nabla f(\mathbf{x}^t)]_i$$

So,

$$y_i^{t+1} = x_i^t \exp\{-s_t [\nabla f(\mathbf{x}^t)]_i\},\$$

then

$$x_i^{t+1} = \frac{y_i^{t+1}}{\sum_j y_j^{t+1}} = \frac{x_i^t \exp\{-s_t [\nabla f(\mathbf{x}^t)]_i\}}{\sum_j x_j^t \exp\{-s_t [\nabla f(\mathbf{x}^t)]_j\}}.$$

1.3.1 Convergence Analysis of Mirror Descent

Theorem 5 Assume that f is convex and L-Lipschz, ϕ is α -strongly convex, and $\{\mathbf{x}^t\}_{t=0}^{\infty}$ is from the Mirror descent algorithm, then

$$f^{best} - f^* \le \frac{R + \frac{L^2}{2\alpha} \sum_{t=0}^{T-1} s_t^2}{\sum_{t=0}^{T-1} s_t},$$
(25)

where $R = \sup_{\mathbf{x} \in \Omega} D_{\phi}(\mathbf{x}, \mathbf{x}^0)$ and $f^{best} = \min_{0 \le t \le T} f(\mathbf{x}^t)$. Moreover, take $s_t = \frac{\sqrt{2\alpha R}}{L\sqrt{T}}$, then

$$f^{best} - f^* \le L \sqrt{\frac{2R}{\alpha T}}.$$
(26)

Proof 2 By the convexity of f, for $t \ge 0$ and any $\mathbf{x} \in \Omega$, we have

$$f(\mathbf{x}^t) - f(\mathbf{x}) \le \langle \nabla f(\mathbf{x}^t), \mathbf{x}^t - \mathbf{x} \rangle$$
(27)

$$=\frac{1}{s_t}\langle \nabla \phi(\mathbf{x}^t) - \nabla \phi(\mathbf{y}^{t+1}), \mathbf{x}^t - \mathbf{x} \rangle$$
(28)

$$= \frac{1}{s_t} \left[D_{\phi}(\mathbf{x}^t, \mathbf{y}^{t+1}) + D_{\phi}(\mathbf{x}, \mathbf{x}^t) - D_{\phi}(\mathbf{x}, \mathbf{y}^{t+1}) \right]$$
(29)

$$\leq \frac{1}{s_t} \left[D_{\phi}(\mathbf{x}^t, \mathbf{y}^{t+1}) + D_{\phi}(\mathbf{x}, \mathbf{x}^t) - D_{\phi}(\mathbf{x}, \mathbf{x}^{t+1}) - D_{\phi}(\mathbf{x}^{t+1}, \mathbf{y}^{t+1}) \right]$$
(30)

where the first equation comes from the optimal condition, i.e., $\nabla \phi(\mathbf{y}^{t+1}) - \nabla \phi(\mathbf{x}^t) + \frac{1}{s_t} \nabla f(\mathbf{x}^t) = 0$, the and the second inequality is induced by the general Pythagores identity 1, and the last inequality uses Theorem 4.

Applying the telescopic sum technique in the term $D_{\phi}(\mathbf{x}, \mathbf{x}^t) - D_{\phi}(\mathbf{x}, \mathbf{x}^{t+1})$ from t = 0 to t = T - 1, we can bound it with $D_{\phi}(\mathbf{x}, \mathbf{x}^0)$. For the remaining,

$$D_{\phi}(\mathbf{x}^{t}, \mathbf{y}^{t+1}) - D_{\phi}(\mathbf{x}^{t+1}, \mathbf{y}^{t+1}) = \phi(\mathbf{x}^{t}) - \phi(\mathbf{x}^{t+1}) - \langle \nabla \phi(\mathbf{y}^{t+1}), \mathbf{x}^{t} - \mathbf{x}^{t+1} \rangle$$
(31)

$$\leq \langle \nabla \phi(\mathbf{x}^{t}) - \nabla \phi(\mathbf{y}^{t+1}), \mathbf{x}^{t} - \mathbf{x}^{t+1} \rangle - \frac{\alpha}{2} \| \mathbf{x}^{t} - \mathbf{x}^{t+1} \|^{2}$$
(32)

$$= s_t \langle \nabla f(\mathbf{x}^t), \mathbf{x}^t - \mathbf{x}^{t+1} \rangle - \frac{\alpha}{2} \| \mathbf{x}^t - \mathbf{x}^{t+1} \|^2$$
(33)

$$\leq s_t L \| \mathbf{x}^t - \mathbf{x}^{t+1} \| - \frac{\alpha}{2} \| \mathbf{x}^t - \mathbf{x}^{t+1} \|^2$$
(34)

$$\leq \frac{(s_t L)^2}{2\alpha} \tag{35}$$

where the first inequality uses the α -strongly convex property and the last inequality uses $az - bz^2 \leq \frac{a^2}{4b}$ for $\forall z \in \mathbb{R}$.

Hence, one has

$$s_t\left(f(\mathbf{x}^t) - f(\mathbf{x}^*)\right) \le D_{\phi}(\mathbf{x}, \mathbf{x}^t) - D_{\phi}(\mathbf{x}, \mathbf{x}^{t+1}) + \frac{(s_t L)^2}{2\alpha}$$
(36)

Summing it over from t = 0 to t = T - 1 and letting $x := x^*$, we proved,

$$\sum_{t=0}^{T-1} s_t \left(f(\mathbf{x}^t) - f(\mathbf{x}^*) \right) \le R + \frac{L^2}{2\alpha} \sum_{t=0}^{T-1} s_t^2.$$
(37)

Plugging in $f^{best} \leq f(\mathbf{x}_t)$ for $0 \leq t \leq T$,

$$f^{best} - f^* \le \frac{R + \frac{L^2}{2\alpha} \sum_{t=0}^{T-1} s_t^2}{\sum_{t=0}^{T-1} s_t},$$
(38)

which complete the proof. If $s_t = \frac{\sqrt{2\alpha R}}{L\sqrt{T}}$ is a constant, it's trivial to prove that $f^{best} - f^*$ has a sub-liner convergence rate.

References