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1 Mirror Descent

1.1 Projected Gradient Descent

Let us consider a general optimization problem

min
x

f(x),

s.t. x ∈ Ω.

Definition 1 Suppose that Ω ⊆ Rn, the indicator function of Ω is

δΩ(x) =

{
+∞, x /∈ Ω

0, x ∈ Ω.
(1)

Definition 2 The projection of a point z onto a set Ω is defined as

πΩ(z) = argmin
x∈Ω

∥x− z∥2. (2)

Example 1 Projection examples:

• Ω = {x|x ⪰ 0}, then πΩ(z) = max{z, 0}.

• Ω = {x|l ⪯ x ⪯ u}, then πΩ(z) = max(min{z, u}, l).

• Ω = B2 = {x| ∥x∥2 ≤ 1}, then

πΩ(z) =

{
z, ∥z∥2 ≤ 1,

z
∥z∥2

∥z∥2 > 1.

• Ω = {x|a⊤x = b}. Q: What is the πΩ(z)??

This is equivalent to
min
x

{f(x) + δΩ(x)}. (3)

Obviously, δΩ is convex and non-smooth. Let us compute the proximal operator of δΩ as follows.

prox1/βδΩ(z
t) = arg min

x∈(δΩ)

{
δΩ(x) +

β

2
∥x− zt∥2

}
= argmin

x∈Ω
∥x− zt∥2 := πΩ(z

t). (4)

Obviously, πΩ(z
t) is the projection of zt onto Ω.

• Ω = {x|x ≥ 0}, then xt+1 = prox1/βδΩ(z
t) = πΩ(z

t) = max{xt − 1
β∇f(xt), 0}.

• Ω = {x|l ≤ x ≤ u}, then xt+1 = prox1/βδΩ(z
t) = πΩ(z

t) = max(min{xt − 1
β∇f(xt), u}, l).

• The same with B2 or hyperplane.

These algorithms are called projected gradient descent.
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1.1.1 Bregman Divergence

Another view point of projected gradient descent. Let us consider

xt+1 = argmin
x∈Ω

f(xt) + ⟨∇f(xt),x− xt⟩+ 1

2st
∥x− xt∥2︸ ︷︷ ︸

distance term

 .

If Ω = Rn, then xt+1 = xt − st∇f(xt).
If Ω ⊂ Rn, then xt+1 = πΩ(x

t − st∇f(xt)).

The basic idea of mirror descent is to choose the distance term to fit the problem geometry. So, the mirror
descent is

xt+1 = argmin
x∈Ω

{
f(xt) + ⟨∇f(xt),x− xt⟩+ 1

st
Dϕ(x,x

t)

}
,

where Dϕ(x,x
t) is a generalized distance function with respect to ϕ.

Definition 3 The Bregman divergence with respect to a convex function ϕ is denoted to be

Dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩. (5)

Example 2 • Let ϕ(x) = 1
2∥x∥

2, then Dϕ(x,y) = ∥x− y∥.

• Let ϕ(x) =
∑

i xi log xi,x ∈ Rn
+, then Dϕ(x,y) =

∑
i(xi log xi/yi + yi − xi).

• If we further assume that x,y ∈ ∆ = {x|
∑

i xi = 1,x ∈ Rn
+}, that is ∆ is a unit simplex. Then,

Dϕ(x,y) =
∑
i

xi log xi/yi = KL(x||y), (6)

where KL is the KL-divergence or relative entropy.

Properties of Bregman divergence:

• Dϕ(x,y) ≥ 0. Dϕ(x,y) = 0 if x = y.

• If ϕ is a α-strongly convex function, then Dϕ(x,y) ≥ α
2 ∥x− y∥2.

• Dϕ(x,y) is convex in x, in general not convex in y.

• In general, Dϕ(x,y) ̸= Dϕ(y,x).

•
∇xDϕ(x,y) = ∇ϕ(x)−∇ϕ(y). (7)

Theorem 1 (Generalized Pythagores Identity)

Dϕ(x,y) +Dϕ(z,x)−Dϕ(z,y) = (∇ϕ(x)−∇ϕ(y))⊤(x− z). (8)

You can compare this with the result:

∥x− y∥2 + ∥z− z∥2 − ∥z− y∥2 = 2(x− y)⊤(x− z).
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Theorem 2 Let ϕ be closed, convex and differentiable. Fix any x,y ∈ (ϕ), define x̂ = ∇ϕ(x) and ŷ = ∇ϕ(y),
then

∇ϕ∗(x̂) = ∇ϕ∗(∇ϕ(x)) = x, (9)
Dϕ(x,y) = Dϕ∗(ŷ, x̂). (10)

Before prove the theorem, let us recall the following lemma:

Lemma 1 Suppose that ϕ is closed and convex. Then the following are equivalent.

• y ∈ ∂ϕ(x),

• x ∈ ∂ϕ∗(y),

• ϕ(x) + ϕ∗(y) = ⟨x,y⟩.

Proof 1 Proof of the above theorem. By Lemma 1, we have that

ϕ∗(x̂) = ⟨x̂,x⟩ − ϕ(x), (11)
ϕ∗(ŷ) = ⟨ŷ,y⟩ − ϕ(y). (12)

Therefore, ∇ϕ∗(x̂) = x and ∇ϕ∗(ŷ) = y. Compute that

Dϕ∗(ŷ, x̂) = ϕ∗(ŷ)− ϕ∗(x̂)− ⟨∇ϕ∗(x̂), ŷ − x̂⟩ (13)
= ⟨ŷ,y⟩ − ϕ(y)− ⟨x̂,x⟩+ ϕ(x)− ⟨x, ŷ − x̂⟩ (14)
= Dϕ(x,y). (15)

1.2 Bregman Projection

Definition 4 The projection of y on to Ω under the Bregman divergence is denoted as

πϕ
Ω(y) = argmin

x∈Ω
Dϕ(x,y). (16)

Obviously, the minimizer exists due to the convexity of Dϕ(x,y) in x.

Theorem 3 (Optimality Condition) Suppose that ϕ is differentiable, then for any y ∈ Rn, let πϕ
Ω(y) =

argminx∈Ω Dϕ(x,y), then
(∇ϕ(πϕ

Ω(y))−∇ϕ(y))⊤(πϕ
Ω(y)− z) ≤ 0, (17)

where for any z ∈ Ω.

Theorem 4
Dϕ(z,y) ≥ Dϕ(z, π

ϕ
Ω(y)) +Dϕ(π

ϕ
Ω(y),y). (18)

It can be proved by Theorem 1.

1.3 Bregman Projected Gradient Descent == Mirror Descent

Recall that PGD

xt+1 = πΩ

(
arg min

x∈Rn

{
f(xt) + ⟨∇f(xt),x− xt⟩+ 1

2st
∥x− xt∥2

})
(19)

= πΩ(x
t − st∇f(xt)). (20)

3



It comes from PGD’s inspiration, the Bregman Projected Gradient Descent is

xt+1 = πϕ
Ω

(
arg min

x∈Rn

{
f(xt) + ⟨∇f(xt),x− xt⟩+ 1

st
Dϕ(x,x

t)

})
(21)

= πϕ
Ω((∇ϕ)−1(∇ϕ(xt)− st∇f(xt))). (22)

The reason is that we first to solve the unconstrained optimization

min
x∈Rn

{
f(xt) + ⟨∇f(xt),x− xt⟩+ 1

st
Dϕ(x,x

t)

}
to obtain the optimal value yt+1 satisfies

∇ϕ(yt+1) = ∇ϕ(xt)− st∇f(xt).

Therefore,
xt+1 = πϕ

Ω(y
t+1) = πϕ

Ω((∇ϕ)−1(∇ϕ(xt)− st∇f(xt))),

where (∇ϕ)−1 is the inverse function of ∇ϕ. Moreover, if we suppose that ϕ is strongly convex, then by
Theorem 2, we have

xt+1 = πϕ
Ω(y

t+1) = πϕ
Ω(∇ϕ∗(∇ϕ(xt)− st∇f(xt))),

due to (∇ϕ)−1 = ∇ϕ∗.

Figure 1: Primal space and Mirror space

Example 3 • Let ϕ(x) = 1
2∥x∥

2, then Dϕ(x,y) = ∥x − y∥. We have the Projected gradient descent
algorithm.

• Let ϕ(x) =
∑

i xi log xi, and x,y ∈ Ω = {x|
∑

i xi = 1,x ∈ Rn
+}, that is Ω is a unit simplex. Then, let

us consider

πϕ
Ω(y) = argmin

x∈Ω
Dϕ(x,y) (23)

= argmin
x∈Ω

{
∑
i

xi log xi/yi}. (24)

Write down the Largrange function as L(x, λ) =
∑

i xi log xi/yi + λ(
∑

i xi − 1). Take ∂L
∂xi

= 0, then
get xi = yi exp(−λ− 1). According to

∑
i xi = 1, then exp(−λ− 1) = 1∑

i yi
. So, xi =

yi∑
j yj

, that is

πϕ
Ω(y) = x∗ =

y

∥y∥1
.

Let us compute yt+1 according to the unconstrained optimization, then

∇ϕ(yt+1) = ∇ϕ(xt)− st∇f(xt),
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implies
1 + log yi = 1 + log xi − st[∇f(xt)]i.

So,
yt+1
i = xt

i exp{−st[∇f(xt)]i},

then

xt+1
i =

yt+1
i∑
j y

t+1
j

=
xt
i exp{−st[∇f(xt)]i}∑

j x
t
j exp{−st[∇f(xt)]j}

.

1.3.1 Convergence Analysis of Mirror Descent

Theorem 5 Assume that f is convex and L-Lipschz, ϕ is α-strongly convex, and {xt}∞t=0 is from the Mirror
descent algorithm, then

f best − f∗ ≤
R+ L2

2α

∑T−1
t=0 s2t∑T−1

t=0 st
, (25)

where R = supx∈Ω Dϕ(x,x
0) and f best = min0≤t≤T f(xt). Moreover, take st =

√
2αR

L
√
T

, then

f best − f∗ ≤ L

√
2R

αT
. (26)

Proof 2 By the convexity of f , for t ≥ 0 and any x ∈ Ω, we have

f(xt)− f(x) ≤ ⟨∇f(xt),xt − x⟩ (27)

=
1

st
⟨∇ϕ(xt)−∇ϕ(yt+1),xt − x⟩ (28)

=
1

st

[
Dϕ(x

t,yt+1) +Dϕ(x,x
t)−Dϕ(x,y

t+1)
]

(29)

≤ 1

st

[
Dϕ(x

t,yt+1) +Dϕ(x,x
t)−Dϕ(x,x

t+1)−Dϕ(x
t+1,yt+1)

]
(30)

where the first equation comes from the optimal condition, i.e., ∇ϕ(yt+1)−∇ϕ(xt) + 1
st
∇f(xt)=0, the and

the second inequality is induced by the general Pythagores identity 1, and the last inequality uses Theorem 4.

Applying the telescopic sum technique in the term Dϕ(x,x
t)−Dϕ(x,x

t+1) from t = 0 to t = T − 1, we can
bound it with Dϕ(x,x

0). For the remaining,

Dϕ(x
t,yt+1)−Dϕ(x

t+1,yt+1) = ϕ(xt)− ϕ(xt+1)− ⟨∇ϕ(yt+1),xt − xt+1⟩ (31)

≤ ⟨∇ϕ(xt)−∇ϕ(yt+1),xt − xt+1⟩ − α

2
∥xt − xt+1∥2 (32)

= st⟨∇f(xt),xt − xt+1⟩ − α

2
∥xt − xt+1∥2 (33)

≤ stL∥xt − xt+1∥ − α

2
∥xt − xt+1∥2 (34)

≤ (stL)
2

2α
(35)

where the first inequality uses the α-strongly convex property and the last inequality uses az − bz2 ≤ a2

4b for
∀z ∈ R.

Hence, one has

st
(
f(xt)− f(x∗)

)
≤ Dϕ(x,x

t)−Dϕ(x,x
t+1) +

(stL)
2

2α
(36)
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Summing it over from t = 0 to t = T − 1 and letting x := x∗, we proved,

T−1∑
t=0

st
(
f(xt)− f(x∗)

)
≤ R+

L2

2α

T−1∑
t=0

s2t . (37)

Plugging in f best ≤ f(xt) for 0 ≤ t ≤ T ,

f best − f∗ ≤
R+ L2

2α

∑T−1
t=0 s2t∑T−1

t=0 st
, (38)

which complete the proof. If st =
√
2αR

L
√
T

is a constant, it’s trivial to prove that f best − f∗ has a sub-liner
convergence rate.

References

6


	Mirror Descent
	Projected Gradient Descent
	Bregman Divergence

	Bregman Projection
	Bregman Projected Gradient Descent == Mirror Descent
	Convergence Analysis of Mirror Descent



